61 research outputs found

    Emptying operation of water supply networks

    Get PDF
    Recently, emptying processes have been studied in experimental facilities in pipelines, but there is a lack regarding applications in actual pipelines, which permits establishing the risk of collapse because of sub-atmospheric pressure occurrence. This research presents a mathematical model to simulate the emptying process of water supply networks, and the application to a water emptying pipeline with nominal diameter of 1000 mm and 578 m long which is located on the southern of Cartagena, Bolívar Deparment, Colombia. In the application, both pipes and the air valve data manufacturer were considered. The behavior of all hydraulic and thermodynamic variables is considered. Results show that is crucial to know sub-atmospheric pressure values to prevent the collapse of the pipeline. The application of the mathematical model confirms that the hydraulic system is well designed depending on air valve sizes and maneuvering of drain valve. © 2018 by the authors

    A decision support tool for the order promising process with product homogeneity requirements in hybrid Make-To-Stock and Make-To-Order environments. Application to a ceramic tile company

    Full text link
    [EN] Order promising in manufacturing systems that produce non-uniform units of the same finished good becomes a more complex process when customer orders need to be served with homogeneous units. To facilitate this task, we propose a mathematical model-based decision tool to support the order promising process according to product homogeneity requirements in hybrid Make-To-Stock (MTS) and Make-To-Order (MTO) contexts. In these manufacturing environments, the comparison of Available-To-Promise (ATP) and/or Capable-To-Promise (CTP) quantities with homogeneous ones ordered by customers is necessary during the order commitment. To properly deal with customers' product uniformity requirements, different ATP consumption rules are implemented by defining a novel objective function. CTP modelling in these systems also entails having to address new aspects, such as estimating future homogeneous quantities in additional lots to the master plan, accomplishing minimum lot sizes and saving in setups when programming new lots. By including CTP in the order promising model, a closer integration with the master production schedule is achieved. The resulting mathematical model was applied to a ceramic tile company in different supply scenarios and execution modes, and at several availability levels (ATP and ATP&CTP). The results validate model performance and provide insights into the impact of ATP consumption rules on the profits made from committed customer orders in different scenarios for the specific ceramic tile company.This work was supported by the Spanish Ministry of Economy and Competitiveness with Grant DPI2011-23597 and the Universitat Polito cnica de Valencia with Grant Ref. PAID-06-11/1840.Alemany Díaz, MDM.; Ortiz Bas, Á.; Fuertes-Miquel, VS. (2018). A decision support tool for the order promising process with product homogeneity requirements in hybrid Make-To-Stock and Make-To-Order environments. Application to a ceramic tile company. Computers & Industrial Engineering. 122:219-234. https://doi.org/10.1016/j.cie.2018.05.040S21923412

    Emptying Operation of Water Supply Networks

    Full text link
    [EN] Recently, emptying processes have been studied in experimental facilities in pipelines, but there is a lack regarding applications in actual pipelines, which permits establishing the risk of collapse because of sub-atmospheric pressure occurrence. This research presents a mathematical model to simulate the emptying process of water supply networks, and the application to a water emptying pipeline with nominal diameter of 1000 mm and 578 m long which is located on the southern of Cartagena, Bolívar Deparment, Colombia. In the application, both pipes and the air valve data manufacturer were considered. The behavior of all hydraulic and thermodynamic variables is considered. Results show that is crucial to know sub-atmospheric pressure values to prevent the collapse of the pipeline. The application of the mathematical model confirms that the hydraulic system is well designed depending on air valve sizes and maneuvering of drain valve.The authors acknowledge the financial support for Oscar E. Coronado-Hernandez covered by Fundacion Centro de Estudios Interdisciplinarios Basicos y Aplicados (CEIBA)-Gobernacion de Bolivar (Colombia).Coronado-Hernández, OE.; Fuertes-Miquel, VS.; Angulo-Hernandez, FN. (2018). Emptying Operation of Water Supply Networks. Water. 10(1):1-11. https://doi.org/10.3390/w1001002211110

    Experimental and numerical analysis of a water emptying pipeline using different air valves

    Get PDF
    The emptying procedure is a common operation that engineers have to face in pipelines. This generates subatmospheric pressure caused by the expansion of air pockets, which can produce the collapse of the system depending on the conditions of the installation. To avoid this problem, engineers have to install air valves in pipelines. However, if air valves are not adequately designed, then the risk in pipelines continues. In this research, a mathematical model is developed to simulate an emptying process in pipelines that can be used for planning this type of operation. The one-dimensional proposed model analyzes the water phase propagation by a new rigid model and the air pockets effect using thermodynamic formulations. The proposed model is validated through measurements of the air pocket absolute pressure, the water velocity and the length of the emptying columns in an experimental facility. Results show that the proposed model can accurately predict the hydraulic characteristic variables. © 2017 by the authors

    Numerical modelling for analysing drainage in irregular profile pipes using OpenFOAM

    Full text link
    [EN] Different methods of two-dimensional and three-dimensional numerical resolution models have been used to predict the air¿water interaction in pipe systems in the early twenty-first century, where reliable and adequate results have been obtained when compared with experimental results. However, the study of the drainage process in pressurized systems with air admitted through openings has not been studied using this type of model due to the complexity that this represents. In this research, a two-dimensional numerical model is developed in the open-source software OpenFOAM; this model represents the drainage of an irregular pipe with air admitted by an air valve, defined by a structured mesh. A validation of the numerical model related to the air admitted by the variation of the air valve diameter is also performed.Paternina-Verona, DA.; Coronado-Hernández, OE.; Fuertes-Miquel, VS. (2022). Numerical modelling for analysing drainage in irregular profile pipes using OpenFOAM. Urban Water Journal. 19(6):569-578. https://doi.org/10.1080/1573062X.2022.205092956957819

    Effect of a commercial air valve on the rapid filling of a single pipeline: A numerical and experimental analysis

    Get PDF
    The filling process in water pipelines produces pressure surges caused by the compression of air pockets. In this sense, air valves should be appropriately designed to expel sufficient air to avoid pipeline failure. Recent studies concerning filling maneuvers have been addressed without considering the behavior of air valves. This work shows a mathematical model developed by the authors which is capable of simulating the main hydraulic and thermodynamic variables during filling operations under the effect of the air valve in a single pipeline, which is based on the mass oscillation equation, the air-water interface, the polytropic equation of the air phase, the air mass equation, and the air valve characterization. The mathematical model is validated in a 7.3-m-long pipeline with a 63-mm nominal diameter. A commercial air valve is positioned in the highest point of the hydraulic installation. Measurements indicate that the mathematical model can be used to simulate this phenomenon by providing good accuracy. © 2019 by the authors.This work is supported by Fundacao para a Ciencia e Tecnologia (FCT), Portugal (grant number PD/BD/114459/2016)

    Effect of the non-stationarity of rainfall events on the design of hydraulic structures for runoff management and its applications to a case study at Gordo Creek watershed in Cartagena de Indias, Colombia

    Get PDF
    The 24-h maximum rainfall (P 24h-max ) observations recorded at the synoptic weather station of Rafael Núñez airport (Cartagena de Indias, Colombia) were analyzed, and a linear increasing trend over time was identified. It was also noticed that the occurrence of the rainfall value (over the years of record) for a return period of 10 years under stationary conditions (148.1 mm) increased, which evidences a change in rainfall patterns. In these cases, the typical stationary frequency analysis is unable to capture such a change. So, in order to further evaluate rainfall observations, frequency analyses of P 24h-max for stationary and non-stationary conditions were carried out (by using the generalized extreme value distribution). The goodness-of-fit test of Akaike Information Criterion (AIC), with values of 753.3721 and 747.5103 for stationary and non-stationary conditions respectively, showed that the latter best depicts the increasing rainfall pattern. Values of rainfall were later estimated for different return periods (2, 5, 10, 25, 50, and 100 years) to quantify the increase (non-stationary versus stationary condition), which ranged 6% to 12% for return periods from 5 years to 100 years, and 44% for a 2-year return period. The effect of these findings were tested in the Gordo creek watershed by first calculating the resulting direct surface runoff (DSR) for various return periods, and then modeling the hydraulic behavior of the downstream area (composed of a 178.5-m creek's reach and an existing box-culvert located at the watershed outlet) that undergoes flooding events every year. The resulting DSR increase oscillated between 8% and 19% for return periods from 5 to 100 years, and 77% for a 2-year return period when the non-stationary and stationary scenarios were compared. The results of this study shed light upon to the precautions that designers should take when selecting a design, based upon rainfall observed, as it may result in an underestimation of both the direct surface runoff and the size of the hydraulic structures for runoff and flood management throughout the city. © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license

    Quasi-static Flow Model for Predicting the Extreme Values of Air Pocket Pressure in Draining and Filling Operations in Single Water Installations

    Get PDF
    [EN] Inertial models have been used by researchers to simulate the draining and filling processes in water pipelines, based on the evolution of the main hydraulic and thermodynamic variables. These models use complex differential equations, which are solved using advanced numerical codes. In this study, a quasi-static flow model is developed to study these operations in hydraulic installations. The quasi-static flow model represents a simplified formulation compared with inertial flow models, in which its numerical resolution is easier because only algebraic equations must be addressed. Experimental measurements of air pocket pressure patterns were conducted in a 4.36 m long single pipeline with an internal diameter of 42 mm. Comparisons between measured and computed air pocket pressure oscillations indicate how the quasi-static flow model can predict extreme values of air pocket pressure for experimental runs, demonstrating the possibility of selecting stiffness and pipe classes in actual pipelines using this model. Two case studies were analysed to determine the behaviour of the quasi-static flow model in large water pipelines.This research and the APC were funded by the Comision Nacional de Investigacion Cientifica y Tecnologica (Conicyt), grant number 1180660.Coronado-Hernández, ÓE.; Fuertes-Miquel, VS.; Mora-Meliá, D.; Salgueiro, Y. (2020). Quasi-static Flow Model for Predicting the Extreme Values of Air Pocket Pressure in Draining and Filling Operations in Single Water Installations. Water. 12(3):1-16. https://doi.org/10.3390/w12030664S116123Abreu, J., Cabrera, E., Izquierdo, J., & García-Serra, J. (1999). Flow Modeling in Pressurized Systems Revisited. Journal of Hydraulic Engineering, 125(11), 1154-1169. doi:10.1061/(asce)0733-9429(1999)125:11(1154)Izquierdo, J., Fuertes, V. S., Cabrera, E., Iglesias, P. L., & Garcia-Serra, J. (1999). Pipeline start-up with entrapped air. Journal of Hydraulic Research, 37(5), 579-590. doi:10.1080/00221689909498518Simpson, A. R., & Wylie, E. B. (1991). Large Water‐Hammer Pressures for Column Separation in Pipelines. Journal of Hydraulic Engineering, 117(10), 1310-1316. doi:10.1061/(asce)0733-9429(1991)117:10(1310)Zhou, L., Liu, D., Karney, B., & Wang, P. (2013). Phenomenon of White Mist in Pipelines Rapidly Filling with Water with Entrapped Air Pockets. Journal of Hydraulic Engineering, 139(10), 1041-1051. doi:10.1061/(asce)hy.1943-7900.0000765Zhou, L., & Liu, D. (2013). Experimental investigation of entrapped air pocket in a partially full water pipe. Journal of Hydraulic Research, 51(4), 469-474. doi:10.1080/00221686.2013.785985Coronado-Hernández, O., Fuertes-Miquel, V., Besharat, M., & Ramos, H. (2017). Experimental and Numerical Analysis of a Water Emptying Pipeline Using Different Air Valves. Water, 9(2), 98. doi:10.3390/w9020098Coronado-Hernández, Ó. E., Besharat, M., Fuertes-Miquel, V. S., & Ramos, H. M. (2019). Effect of a Commercial Air Valve on the Rapid Filling of a Single Pipeline: a Numerical and Experimental Analysis. Water, 11(9), 1814. doi:10.3390/w11091814Vasconcelos, J. G., & Wright, S. J. (2008). Rapid Flow Startup in Filled Horizontal Pipelines. Journal of Hydraulic Engineering, 134(7), 984-992. doi:10.1061/(asce)0733-9429(2008)134:7(984)Fuertes-Miquel, V. S., Coronado-Hernández, O. E., Iglesias-Rey, P. L., & Mora-Meliá, D. (2018). Transient phenomena during the emptying process of a single pipe with water–air interaction. Journal of Hydraulic Research, 57(3), 318-326. doi:10.1080/00221686.2018.1492465Fuertes-Miquel, V. S., Coronado-Hernández, O. E., Mora-Meliá, D., & Iglesias-Rey, P. L. (2019). Hydraulic modeling during filling and emptying processes in pressurized pipelines: a literature review. Urban Water Journal, 16(4), 299-311. doi:10.1080/1573062x.2019.1669188Besharat, M., Coronado-Hernández, O. E., Fuertes-Miquel, V. S., Viseu, M. T., & Ramos, H. M. (2018). Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket. Urban Water Journal, 15(8), 769-779. doi:10.1080/1573062x.2018.1540711Besharat, M., Coronado-Hernández, O. E., Fuertes-Miquel, V. S., Viseu, M. T., & Ramos, H. M. (2019). Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage. Journal of Hydraulic Research, 58(4), 553-565. doi:10.1080/00221686.2019.1625819Laanearu, J., Annus, I., Koppel, T., Bergant, A., Vučković, S., Hou, Q., … van’t Westende, J. M. C. (2012). Emptying of Large-Scale Pipeline by Pressurized Air. Journal of Hydraulic Engineering, 138(12), 1090-1100. doi:10.1061/(asce)hy.1943-7900.0000631Tijsseling, A. S., Hou, Q., Bozkuş, Z., & Laanearu, J. (2015). Improved One-Dimensional Models for Rapid Emptying and Filling of Pipelines. Journal of Pressure Vessel Technology, 138(3). doi:10.1115/1.4031508Malekpour, A., Karney, B. W., & Nault, J. (2016). Physical Understanding of Sudden Pressurization of Pipe Systems with Entrapped Air: Energy Auditing Approach. Journal of Hydraulic Engineering, 142(2), 04015044. doi:10.1061/(asce)hy.1943-7900.0001067Noto, L., & Tucciarelli, T. (2001). DORA Algorithm for Network Flow Models with Improved Stability and Convergence Properties. Journal of Hydraulic Engineering, 127(5), 380-391. doi:10.1061/(asce)0733-9429(2001)127:5(380)Zhou, L., Liu, D., & Ou, C. (2011). Simulation of Flow Transients in a Water Filling Pipe Containing Entrapped Air Pocket with VOF Model. Engineering Applications of Computational Fluid Mechanics, 5(1), 127-140. doi:10.1080/19942060.2011.11015357SaemI, S., Raisee, M., Cervantes, M. J., & Nourbakhsh, A. (2018). Computation of two- and three-dimensional water hammer flows. Journal of Hydraulic Research, 57(3), 386-404. doi:10.1080/00221686.2018.1459892Apollonio, C., Balacco, G., Fontana, N., Giugni, M., Marini, G., & Piccinni, A. (2016). Hydraulic Transients Caused by Air Expulsion During Rapid Filling of Undulating Pipelines. Water, 8(1), 25. doi:10.3390/w8010025Wang, L., Wang, F., Karney, B., & Malekpour, A. (2017). Numerical investigation of rapid filling in bypass pipelines. Journal of Hydraulic Research, 55(5), 647-656. doi:10.1080/00221686.2017.1300193Coronado-Hernández, O. E., Fuertes-Miquel, V. S., Besharat, M., & Ramos, H. M. (2018). Subatmospheric pressure in a water draining pipeline with an air pocket. Urban Water Journal, 15(4), 346-352. doi:10.1080/1573062x.2018.1475578Ramezani, L., Karney, B., & Malekpour, A. (2016). Encouraging Effective Air Management in Water Pipelines: A Critical Review. Journal of Water Resources Planning and Management, 142(12), 04016055. doi:10.1061/(asce)wr.1943-5452.0000695Martins, S. C., Ramos, H. M., & Almeida, A. B. (2015). Conceptual analogy for modelling entrapped air action in hydraulic systems. Journal of Hydraulic Research, 53(5), 678-686. doi:10.1080/00221686.2015.1077353Zhou, F., Hicks, F. E., & Steffler, P. M. (2002). Transient Flow in a Rapidly Filling Horizontal Pipe Containing Trapped Air. Journal of Hydraulic Engineering, 128(6), 625-634. doi:10.1061/(asce)0733-9429(2002)128:6(625)Cabrera, E., Abreu, J., Pérez, R., & Vela, A. (1992). Influence of Liquid Length Variation in Hydraulic Transients. Journal of Hydraulic Engineering, 118(12), 1639-1650. doi:10.1061/(asce)0733-9429(1992)118:12(1639

    Effect of a commercial air valve on the rapid filling of a single pipeline: a numerical and experimental analysis

    Full text link
    [EN] The filling process in water pipelines produces pressure surges caused by the compression of air pockets. In this sense, air valves should be appropriately designed to expel sufficient air to avoid pipeline failure. Recent studies concerning filling maneuvers have been addressed without considering the behavior of air valves. This work shows a mathematical model developed by the authors which is capable of simulating the main hydraulic and thermodynamic variables during filling operations under the effect of the air valve in a single pipeline, which is based on the mass oscillation equation, the air¿water interface, the polytropic equation of the air phase, the air mass equation, and the air valve characterization. The mathematical model is validated in a 7.3-m-long pipeline with a 63-mm nominal diameter. A commercial air valve is positioned in the highest point of the hydraulic installation. Measurements indicate that the mathematical model can be used to simulate this phenomenon by providing good accuracy.This work is supported by Fundacao para a Ciencia e Tecnologia (FCT), Portugal (grant number PD/BD/114459/2016).Coronado-Hernández, OE.; Besharat, M.; Fuertes-Miquel, VS.; Ramos, HM. (2019). Effect of a commercial air valve on the rapid filling of a single pipeline: a numerical and experimental analysis. Water. 11(9):1-13. https://doi.org/10.3390/w11091814S11311

    The crucial importance of air valve characterization to the transient response of pipeline systems

    Full text link
    [EN] Air valves are often crucial components in an air management strategy for pressurized water conveyance systems. However, the reliability of characteristic curves of air valves found in product catalogs is quite variable. This paper evaluates the consistency of a selection of product curves to basic air flow principles. Several recurring issues are identified: catalogs that present identical curves for admission and expulsion (they are, in fact, quite distinct); admission curves that are inconsistent with the isentropic inflow model; inflow (admission) curves actually consistent with the shape of the isentropic outflow model; limited validity curves that encompass only part of the subsonic flow regimen; and unclear or unstated specifications regarding the conditions under which the characterization tests were performed or their results displayed. To examine the significance of these representational issues related to air valve capacity on system behaviour, this paper uses a case study involving the simulated transient response arising from a pump trip at the upstream end of a rising water line having a distinct high point fitted with an air valve. It is found that employing inaccurate air valve characteristics in a transient simulation may potentially result in appreciable or even dangerous simulation errors.This study was financed in part by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brasil (CAPES)-Finance Code 001.Tasca, E.; Karney, B.; Fuertes-Miquel, VS.; Dalfré Filho, JG.; Luvizotto Jr., E. (2022). The crucial importance of air valve characterization to the transient response of pipeline systems. Water. 14(17):1-13. https://doi.org/10.3390/w14172590113141
    corecore